Boundary Control of Quasi-Linear Hyperbolic Initial Boundary-Value Problem


Editie 1

The thesis presents different control design approaches for stabilizing networks of quasi-linear hyperbolic partial differential equations. These equations are usually conservative, which gives them interesting properties to design stabilizing control laws.

Two main design approaches are developed: a methodology based on entropies and Lyapunov functions and a methodology based on the Riemann invariants. The stability theorems are illustrated using numerical simulations. Two practical applications of these methodologies are presented. Network of navigation channels are modelled using the Saint-Venant equation (also known as the Shallow Water Equations). The stabilization problem of such system has an industrial importance in order to satisfy the navigation constraints and to optimize the production of electricity in hydroelectric plants, usually located at each hydraulic gate. A second application deals with the regulation of water waves in moving tanks. This problem is also modelled by a modified version of the shallow water equations and appears in a number industrial fields which deal with liquid moving parts.


Paperback - In het Engels 14,00 €

Gegevens


Uitgever
Presses universitaires de Louvain
Titel deel
Numéro 41
Auteur
Jonathan de Halleux,
Collectie
Thèses de l'École polytechnique de Louvain
Taal
Engels
Categorie uitgever
> Toegepaste wetenschappen
BISAC Subject Heading
TEC000000 TECHNOLOGY & ENGINEERING
Onix Audience Codes
06 Professional and scholarly
CLIL (2013)
3069 TECHNIQUES ET SCIENCES APPLIQUEES
Voor het eerst gepubliceerd
2004
Type werk
Thesis

Paperback


Publicatie datum
01 januari 2004
ISBN-13
9782930344690
Omvang
Aantal pagina's hoofdinhoud : 142
Code
2930344695
Formaat
16 x 24 x 0,8 cm
Gewicht
244 grams
Aanbevolen verkoopprijs
14,00 €
ONIX XML
Version 2.1, Version 3

Google Book Preview


Schrijf een reactie